Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
2.
Biosens Bioelectron ; 227: 115169, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2241271

ABSTRACT

The COVID-19 pandemic is an ongoing global public health threat. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and binding of the SARS-CoV-2 spike to its receptor, angiotensin-converting enzyme 2 (ACE2), on host cells is critical for viral infection. Here, we developed a luminescent biosensor that readily detects interactions of the spike receptor-binding domain (RBD) and ACE2 in cell culture medium ('SpACE-CCM'), which was based on bimolecular complementation of the split nanoluciferase-fused spike RBD and ectodomain of ACE2 and further engineered to be efficiently secreted from cells by adding a heterologous secretory signal peptide (SSP). Screening of various SSPs identified 'interferon-α+alanine-aspartate' as the SSP that induced the highest activity. The SpACE-CCM biosensor was validated by observing a marked reduction of the activity caused by interaction-defective mutations or in the presence of neutralizing antibodies, recombinant decoy proteins, or peptides. Importantly, the SpACE-CCM biosensor responded well in assay-validating conditions compared with conventional cell lysate-based NanoLuc Binary Technology, indicating its advantage. We further demonstrated the biosensor's versatility by quantitatively detecting neutralizing activity in blood samples from COVID-19 patients and vaccinated individuals, discovering a small molecule interfering with the spike RBD-ACE2 interaction through high-throughput screening, and assessing the cross-reactivity of neutralizing antibodies against SARS-CoV-2 variants. Because the SpACE-CCM is a facile and rapid one-step reaction biosensor that aptly recapitulates the native spike-ACE2 interaction, it would be advantageous in many experimental and clinical applications associated with this interaction.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Pandemics , Protein Binding , Antibodies, Neutralizing/metabolism , Cell Culture Techniques , Spike Glycoprotein, Coronavirus
3.
Adv Immunol ; 154: 1-69, 2022.
Article in English | MEDLINE | ID: covidwho-2229796

ABSTRACT

Despite effective spike-based vaccines and monoclonal antibodies, the SARS-CoV-2 pandemic continues more than two and a half years post-onset. Relentless investigation has outlined a causative dynamic between host-derived antibodies and reciprocal viral subversion. Integration of this paradigm into the architecture of next generation antiviral strategies, predicated on a foundational understanding of the virology and immunology of SARS-CoV-2, will be critical for success. This review aims to serve as a primer on the immunity endowed by antibodies targeting SARS-CoV-2 spike protein through a structural perspective. We begin by introducing the structure and function of spike, polyclonal immunity to SARS-CoV-2 spike, and the emergence of major SARS-CoV-2 variants that evade immunity. The remainder of the article comprises an in-depth dissection of all major epitopes on SARS-CoV-2 spike in molecular detail, with emphasis on the origins, neutralizing potency, mechanisms of action, cross-reactivity, and variant resistance of representative monoclonal antibodies to each epitope.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Epitopes , Humans , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
4.
Viruses ; 14(11)2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2110273

ABSTRACT

The wild-type SARS-CoV-2 Spike-based vaccines authorized so far have reduced COVID-19 severity, but periodic boosts are required to counteract the decline in immunity. An accelerated rate of immune escape to vaccine-elicited immunity has been associated with Spike protein antigenic shifts, as seen in the Omicron variant of concern and its sublineages, demanding the development of Omicron Spike-based vaccines. Herein, we review the evidence in animal models and topline results from ongoing clinical trials with such updated vaccines, discussing the pros and cons for their deployment.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , COVID-19 Vaccines , Viral Envelope Proteins/metabolism , Antibodies, Viral/metabolism , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Neutralizing/metabolism , Spike Glycoprotein, Coronavirus/genetics
5.
Emerg Microbes Infect ; 11(1): 2474-2484, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2051171

ABSTRACT

BBIBP-CorV exerts efficient protection against SARS-CoV-2 infection. However, waning vaccine-induced humoral immune responses after two-dose vaccination have significantly undermined durable immuno-protection. In this study, we have demonstrated that although anti-spike (S) antibody responses in BBIBP-CorV vaccinees exhibited three serotypes after 6 months, including de novo sero-negative, sero-positive, and sero-decay features, S-specific interferon-γ release as well as Th1 cytokine production in CD4+ and CD8+ T cells were comparable, especially in vaccinees without detectable neutralizing antibodies. Notably, regardless of dramatic increases in humoral immunity after booster vaccination, T cell responses targeting S protein from either wild type or Omicron remained stable before and after booster vaccination in all three serotype vaccinees. No severe cases were observed even in the sero-decay group during the Omicron epidemic in Shanghai. Our results thus illustrate that unlike fluctuating humoral responses, viral-specific T cell responses are extremely stable after booster vaccination. Sustained T cell responses might be dedicated to the rapid restoration of antibody responses after booster vaccination.


Subject(s)
COVID-19 , Immunity, Humoral , Humans , Antibodies, Neutralizing/metabolism , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Interferon-gamma/metabolism , SARS-CoV-2 , Vaccination
6.
Int J Pharm ; 627: 122256, 2022 Nov 05.
Article in English | MEDLINE | ID: covidwho-2049315

ABSTRACT

Throughout the COVID-19 pandemic, many prophylactic and therapeutic drugs have been evaluated and introduced. Among these treatments, monoclonal antibodies (mAbs) that bind to and neutralize SARS-CoV-2 virus have been applied as complementary and alternative treatments to vaccines. Although different methodologies have been utilized to produce mAbs, traditional hybridoma fusion technology is still commonly used for this purpose due to its unmatched performance record. In this study, we coupled the hybridoma fusion strategy with mRNA-lipid nanoparticle (LNP) immunization. This time-saving approach can circumvent biological and technical hurdles, such as difficult-to-express membrane proteins, antigen instability, and the lack of posttranslational modifications on recombinant antigens. We used mRNA-LNP immunization and hybridoma fusion technology to generate mAbs against the receptor binding domain (RBD) of SARS-CoV-2 spike (S) protein. Compared with traditional protein-based immunization approaches, inoculation of mice with RBD mRNA-LNP induced higher titers of serum antibodies and markedly increased serum neutralizing activity. The mAbs we obtained can bind to SARS-CoV-2 RBDs from several variants. Notably, RBD-mAb-3 displayed particularly high binding affinities and neutralizing potencies against both Alpha and Delta variants. In addition to introducing specific mAbs against SARS-CoV-2, our data generally demonstrate that mRNA-LNP immunization may be useful to quickly generate highly functional mAbs against emerging infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mice , Animals , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Pandemics , Antibody Formation , RNA, Messenger , COVID-19/prevention & control , Antibodies, Viral , Antibodies, Monoclonal/chemistry , Immunization
7.
EBioMedicine ; 82: 104158, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1991006

ABSTRACT

BACKGROUND: In recent months, Omicron variants of SARS-CoV-2 have become dominant in many regions of the world, and case numbers with Omicron subvariants BA.1 and BA.2 continue to increase. Due to numerous mutations in the spike protein, the efficacy of currently available vaccines, which are based on Wuhan-Hu 1 isolate of SARS-CoV-2, is reduced, leading to breakthrough infections. Efficacy of monoclonal antibody therapy is also likely impaired. METHODS: In our in vitro study using A549-AT cells constitutively expressing ACE2 and TMPRSS2, we determined and compared the neutralizing capacity of vaccine-elicited sera, convalescent sera and monoclonal antibodies against authentic SARS-CoV-2 Omicron BA.1 and BA.2 compared with Delta. FINDINGS: Almost no neutralisation of Omicron BA.1 and BA.2 was observed using sera from individuals vaccinated with two doses 6 months earlier, regardless of the type of vaccine taken. Shortly after the booster dose, most sera from triple BNT162b2-vaccinated individuals were able to neutralise both Omicron variants. In line with waning antibody levels three months after the booster, only weak residual neutralisation was observed for BA.1 (26%, n = 34, 0 median NT50) and BA.2 (44%, n = 34, 0 median NT50). In addition, BA.1 but not BA.2 was resistant to the neutralising monoclonal antibodies casirivimab/imdevimab, while BA.2 exhibited almost a complete evasion from the neutralisation induced by sotrovimab. INTERPRETATION: Both SARS-CoV-2 Omicron subvariants BA.1 and BA.2 escape antibody-mediated neutralisation elicited by vaccination, previous infection with SARS-CoV-2, and monoclonal antibodies. Waning immunity renders the majority of tested sera obtained three months after booster vaccination negative in BA.1 and BA.2 neutralisation. Omicron subvariant specific resistance to the monoclonal antibodies casirivimab/imdevimab and sotrovimab emphasizes the importance of genotype-surveillance and guided application. FUNDING: This study was supported in part by the Goethe-Corona-Fund of the Goethe University Frankfurt (M.W.) and the Federal Ministry of Education and Research (COVIDready; grant 02WRS1621C (M.W.).


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/metabolism , Antibodies, Viral , BNT162 Vaccine , COVID-19/therapy , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
8.
J Mol Biol ; 434(13): 167622, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1930974

ABSTRACT

Among the five known SARS-CoV-2 variants of concern, Delta is the most virulent leading to severe symptoms and increased mortality among infected people. Our study seeks to examine how the biophysical parameters of the Delta variant correlate to the clinical observations. Receptor binding domain (RBD) is the first point of contact with the human host cells and is the immunodominant form of the spike protein. Delta variant RBD contains two novel mutations L452R and T478K. We examined the effect of single as well as the double mutations on RBD expression in human Expi293 cells, RBD stability using urea and thermal denaturation, and RBD binding to angiotensin converting enzyme 2 (ACE2) receptor and to neutralizing antibodies using isothermal titration calorimetry. Delta variant RBD showed significantly higher expression compared to the wild-type RBD, and the increased expression is due to L452R mutation. Despite their non-conservative nature, none of the mutations significantly affected RBD structure and stability. All mutants showed similar binding affinity to ACE2 and to Class 1 antibodies (CC12.1 and LY-CoV016) as that of the wild-type. Delta double mutant L452R/T478K showed no binding to Class 2 antibodies (P2B-2F6 and LY-CoV555) and a hundred-fold weaker binding to a Class 3 antibody (REGN10987), and the decreased antibody binding is determined by the L452R mutation. These results indicate that the immune escape from neutralizing antibodies, rather than increased receptor binding, is the main biophysical parameter that determined the fitness landscape of the Delta variant RBD.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/metabolism , COVID-19 , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal, Humanized , COVID-19/genetics , COVID-19/virology , Humans , Immune Evasion , Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
9.
Sci Rep ; 12(1): 10027, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1921705

ABSTRACT

High yield production of recombinant HIV SOSIP envelope (Env) trimers has proven elusive as numerous disulfide bonds, proteolytic cleavage and extensive glycosylation pose high demands on the host cell machinery and stress imposed by accumulation of misfolded proteins may ultimately lead to cellular toxicity. The present study utilized the Nicotiana benthamiana/p19 (N.b./p19) transient plant system to assess co-expression of two ER master regulators and 5 chaperones, crucial in the folding process, to enhance yields of three Env SOSIPs, single chain BG505 SOSIP.664 gp140, CH505TF.6R.SOSIP.664.v4.1 and CH848-10.17-DT9. Phenotypic changes in leaves induced by SOSIP expression were employed to rapidly identify chaperone-assisted improvement in health and expression. Up to 15-fold increases were obtained by co-infiltration of peptidylprolvl isomerase (PPI) and calreticulin (CRT) which were further enhanced by addition of the ER-retrieval KDEL tags to the SOSIP genes; levels depending on individual SOSIP type, day of harvest and chaperone gene dosage. Results are consistent with reducing SOSIP misfolding and cellular stress due to increased exposure to the plant host cell's calnexin/calreticulin network and accelerating the rate-limiting cis-trans isomerization of Xaa-Pro peptide bonds respectively. Plant transient co-expression facilitates rapid identification of host cell factors and will be translatable to other complex glycoproteins and mammalian expression systems.


Subject(s)
HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing/metabolism , Calreticulin/genetics , Calreticulin/metabolism , HIV Antibodies/metabolism , HIV-1/genetics , Mammals/metabolism , Peptidylprolyl Isomerase/metabolism , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/metabolism
10.
PLoS One ; 17(3): e0249723, 2022.
Article in English | MEDLINE | ID: covidwho-1896431

ABSTRACT

Approximately 10% of infants infected with SARS-CoV-2 will experience COVID-19 illness requiring advanced care. A potential mechanism to protect this population is passive immunization via the milk of a previously infected person. We and others have reported on the presence of SARS-CoV-2-specific antibodies in human milk. We now report the prevalence of SARS-CoV-2 IgA in the milk of 74 COVID-19-recovered participants, and find that 89% of samples are positive for Spike-specific IgA. In a subset of these samples, 95% exhibited robust IgA activity as determined by endpoint binding titer, with 50% considered high-titer. These IgA-positive samples were also positive for Spike-specific secretory antibody. Levels of IgA antibodies and secretory antibodies were shown to be strongly positively correlated. The secretory IgA response was dominant among the milk samples tested compared to the IgG response, which was present in 75% of samples and found to be of high-titer in only 13% of cases. Our IgA durability analysis using 28 paired samples, obtained 4-6 weeks and 4-10 months after infection, found that all samples exhibited persistently significant Spike-specific IgA, with 43% of donors exhibiting increasing IgA titers over time. Finally, COVID-19 and pre-pandemic control milk samples were tested for the presence of neutralizing antibodies; 6 of 8 COVID-19 samples exhibited neutralization of Spike-pseudotyped VSV (IC50 range, 2.39-89.4ug/mL) compared to 1 of 8 controls. IgA binding and neutralization capacities were found to be strongly positively correlated. These data are highly relevant to public health, not only in terms of the protective capacity of these antibodies for breastfed infants, but also for the potential use of such antibodies as a COVID-19 therapeutic, given that secretory IgA is highly in all mucosal compartments.


Subject(s)
Antibodies, Neutralizing/immunology , Immunoglobulin A/immunology , Milk, Human/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adult , Antibodies, Neutralizing/metabolism , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19/virology , Female , Humans , Immunoglobulin A/metabolism , Neutralization Tests , SARS-CoV-2/isolation & purification , Young Adult
11.
Viruses ; 14(4)2022 03 24.
Article in English | MEDLINE | ID: covidwho-1834918

ABSTRACT

The effect of treatment with favipiravir, an antiviral purine nucleoside analog, for coronavirus disease 2019 (COVID-19) on the production and duration of neutralizing antibodies for SARS-CoV-2 was explored. There were 17 age-, gender-, and body mass index-matched pairs of favipiravir treated versus control selected from a total of 99 patients recovered from moderate COVID-19. These subjects participated in the longitudinal (>6 months) analysis of (i) SARS-CoV-2 spike protein's receptor-binding domain IgG, (ii) virus neutralization assay using authentic virus, and (iii) neutralization potency against original (WT) SARS-CoV-2 and cross-neutralization against B.1.351 (beta) variant carrying triple mutations of K417N, E484K, and N501Y. The results demonstrate that the use of favipiravir: (1) significantly accelerated the elimination of SARS-CoV-2 in the case vs. control groups (p = 0.027), (2) preserved the generation and persistence of neutralizing antibodies in the host, and (3) did not interfere the maturation of neutralizing potency of anti-SARS-CoV-2 and neutralizing breadth against SARS-CoV-2 variants. In conclusion, treatment of COVID-19 with favipiravir accelerates viral clearance and does not interfere the generation or maturation of neutralizing potency against both WT SARS-CoV-2 and its variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 Drug Treatment , SARS-CoV-2 , Amides/therapeutic use , Antibodies, Neutralizing/metabolism , Antibodies, Viral , Humans , Immunoglobulin G , Neutralization Tests , Pyrazines/therapeutic use , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
12.
Brief Bioinform ; 23(3)2022 05 13.
Article in English | MEDLINE | ID: covidwho-1774343

ABSTRACT

Coronavirus disease 2019 pandemic continues globally with a growing number of infections, but there are currently no effective antibody drugs against the virus. In addition, 90% amino acid sequence identity between the S2 subunit of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV S proteins attracts us to examine S2-targeted cross-neutralizing antibodies that are not yet well defined. We therefore immunized RenMab mice with the full-length S protein and constructed a high-throughput antibody discovery method based on single-cell sequencing technology to isolate SARS-CoV-2 S-targeted neutralizing antibodies and cross-neutralizing antibodies against the S2 region of SARS-CoV-2/SARS-CoV S. Diversity of antibody sequences in RenMab mice and consistency in B-cell immune responses between RenMab mice and humans enabled screening of fully human virus-neutralizing antibodies. From all the frequency >1 paired clonotypes obtained from single-cell V(D)J sequencing, 215 antibodies with binding affinities were identified and primarily bound S2. However, only two receptor-binding domain-targeted clonotypes had neutralizing activity against SARS-CoV-2. Moreover, 5' single-cell RNA sequencing indicated that these sorted splenic B cells are mainly plasmablasts, germinal center (GC)-dependent memory B-cells and GC B-cells. Among them, plasmablasts and GC-dependent memory B-cells were considered the most significant possibility of producing virus-specific antibodies. Altogether, using a high-throughput single cell-based antibody discovery approach, our study highlighted the challenges of developing S2-binding neutralizing antibodies against SARS-CoV-2 and provided a novel direction for the enrichment of antigen-specific B-cells.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Broadly Neutralizing Antibodies , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
13.
Nat Microbiol ; 7(4): 524-529, 2022 04.
Article in English | MEDLINE | ID: covidwho-1773981

ABSTRACT

SARS-CoV-2 variant Lambda was dominant in several South American countries, including Chile. To ascertain the efficacy of local vaccination efforts, we used pseudotyped viruses to characterize the neutralization capacity of antibodies elicited by CoronaVac (n = 53) and BNT162b2 (n = 56) in healthcare workers from Clínica Santa María and the Faculty of Medicine at Universidad de Chile, as well as in convalescent plasma from individuals infected during the first wave visiting the Hospital Clínico at Pontificia Universidad Católica (n = 30). We observed that BNT162b2 elicits higher neutralizing antibody titres than CoronaVac, with differences ranging from 7.4-fold for the ancestral spike (Wuhan-Hu-1) to 8.2-fold for the Lambda spike and 13-fold for the Delta spike. Compared with the ancestral virus, neutralization against D614G, Alpha, Gamma, Lambda and Delta variants was reduced by between 0.93- and 4.22-fold for CoronaVac, 1.04- and 2.38-fold for BNT162b2, and 1.26- and 2.67-fold for convalescent plasma. Comparative analyses among the spike structures of the different variants suggest that mutations in the spike protein from the Lambda variant, including the 246-252 deletion in an antigenic supersite at the N-terminal domain loop and L452Q/F490S within the receptor-binding domain, may account for immune escape. Interestingly, analyses using pseudotyped and whole viruses showed increased entry rates into HEK293T-ACE2 cells, but reduced replication rates in Vero-E6 cells for the Lambda variant when compared with the Alpha, Gamma and Delta variants. Our data show that inactivated virus and messenger RNA vaccines elicit different levels of neutralizing antibodies with different potency to neutralize SARS-CoV-2 variants, including the variant of interest Lambda.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing/metabolism , BNT162 Vaccine , COVID-19/therapy , Chile , HEK293 Cells , Humans , Immunization, Passive , Membrane Glycoproteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/metabolism , COVID-19 Serotherapy
14.
Front Immunol ; 13: 822159, 2022.
Article in English | MEDLINE | ID: covidwho-1742216

ABSTRACT

Virus-neutralizing antibodies are one of the few treatment options for COVID-19. The evolution of SARS-CoV-2 virus has led to the emergence of virus variants with reduced sensitivity to some antibody-based therapies. The development of potent antibodies with a broad spectrum of neutralizing activity is urgently needed. Here we isolated a panel of single-domain antibodies that specifically bind to the receptor-binding domain of SARS-CoV-2 S glycoprotein. Three of the selected antibodies exhibiting most robust neutralization potency were used to generate dimeric molecules. We observed that these modifications resulted in up to a 200-fold increase in neutralizing activity. The most potent heterodimeric molecule efficiently neutralized each of SARS-CoV-2 variant of concern, including Alpha, Beta, Gamma, Delta and Omicron variants. This heterodimeric molecule could be a promising drug candidate for a treatment for COVID-19 caused by virus variants of concern.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19/immunology , SARS-CoV-2/physiology , Single-Domain Antibodies/metabolism , Epitopes/immunology , Humans , Neutralization Tests , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/immunology
15.
mBio ; 13(2): e0013522, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1741574

ABSTRACT

At the time of this writing, December 2021, potential emergence of vaccine escape variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a grave global concern. The interface between the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein and the host receptor (ACE2) overlaps the binding site of principal neutralizing antibodies (NAb), limiting the repertoire of viable mutations. Nonetheless, variants with multiple RBD mutations have risen to dominance. Nonadditive, epistatic relationships among RBD mutations are apparent, and assessing the impact of such epistasis on the mutational landscape, particularly the risk of vaccine escape, is crucial. We employed protein structure modeling using Rosetta to compare the effects of all single mutants at the RBD-NAb and RBD-ACE2 interfaces for the wild type and Delta, Gamma, and Omicron variants. Overall, epistasis at the RBD interface appears to be limited, and the effects of most multiple mutations are additive. Epistasis at the Delta variant interface weakly stabilizes NAb interaction relative to ACE2 interaction, whereas in Gamma, epistasis more substantially destabilizes NAb interaction. Despite bearing many more RBD mutations, the epistatic landscape of Omicron closely resembles that of Gamma. Thus, although Omicron poses new risks not observed with Delta, structural constraints on the RBD appear to hamper continued evolution toward more complete vaccine escape. The modest ensemble of mutations relative to the wild type that are currently known to reduce vaccine efficacy is likely to contain the majority of all possible escape mutations for future variants, predicting the continued efficacy of the existing vaccines. IMPORTANCE Emergence of vaccine escape variants of SARS-CoV-2 is arguably the most pressing problem during the COVID-19 pandemic as vaccines are distributed worldwide. We employed a computational approach to assess the risk of antibody escape resulting from mutations in the receptor-binding domain of the spike protein of the wild-type SARS-CoV-2 virus as well as the Delta, Gamma, and Omicron variants. The efficacy of the existing vaccines against Omicron could be substantially reduced relative to the wild type, and the potential for vaccine escape is of grave concern. Our results suggest that although Omicron poses new evolutionary risks not observed for Delta, structural constraints on the RBD make continued evolution toward more complete vaccine escape from either Delta or Omicron unlikely. The modest set of escape-enhancing mutations already identified for the wild type likely include the majority of all possible mutations with this effect.


Subject(s)
COVID-19 , Vaccines , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Neutralizing/metabolism , Epistasis, Genetic , Humans , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
16.
Front Immunol ; 12: 681636, 2021.
Article in English | MEDLINE | ID: covidwho-1714997

ABSTRACT

The emergence of COVID-19 has emphasised that biological assay data must be analysed quickly to develop safe, effective and timely vaccines/therapeutics. For viruses such as SARS-CoV-2, the primary way of measuring immune correlates of protection is through assays such as the pseudotype microneutralisation (pMN) assay, thanks to its safety and versatility. However, despite the presence of existing tools for data analysis such as PRISM and R the analysis of these assays remains cumbersome and time-consuming. We introduce an open-source R Shiny web application and R library (AutoPlate) to accelerate data analysis of dose-response curve immunoassays. Using example data from influenza studies, we show that AutoPlate improves on available analysis software in terms of ease of use, flexibility and speed. AutoPlate (https://philpalmer.shinyapps.io/AutoPlate/) is a tool for the use of laboratories and wider scientific community to accelerate the analysis of biological assays in the development of viral vaccines and therapeutics.


Subject(s)
COVID-19/diagnosis , Immunoassay/statistics & numerical data , Influenza A virus/physiology , Influenza, Human/diagnosis , SARS-CoV-2/physiology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Data Interpretation, Statistical , Dose-Response Relationship, Drug , Humans , Immunoassay/standards , Quality Control , Software
17.
Front Immunol ; 13: 790334, 2022.
Article in English | MEDLINE | ID: covidwho-1715001

ABSTRACT

The capacity of pre-existing immunity to human common coronaviruses (HCoV) to cross-protect against de novo COVID-19is yet unknown. In this work, we studied the sera of 175 COVID-19 patients, 76 healthy donors and 3 intravenous immunoglobulins (IVIG) batches. We found that most COVID-19 patients developed anti-SARS-CoV-2 IgG antibodies before IgM. Moreover, the capacity of their IgGs to react to beta-HCoV, was present in the early sera of most patients before the appearance of anti-SARS-CoV-2 IgG. This implied that a recall-type antibody response was generated. In comparison, the patients that mounted an anti-SARS-COV2 IgM response, prior to IgG responses had lower titres of anti-beta-HCoV IgG antibodies. This indicated that pre-existing immunity to beta-HCoV was conducive to the generation of memory type responses to SARS-COV-2. Finally, we also found that pre-COVID-19-era sera and IVIG cross-reacted with SARS-CoV-2 antigens without neutralising SARS-CoV-2 infectivity in vitro. Put together, these results indicate that whilst pre-existing immunity to HCoV is responsible for recall-type IgG responses to SARS-CoV-2, it does not lead to cross-protection against COVID-19.


Subject(s)
Betacoronavirus/physiology , COVID-19/immunology , Common Cold/immunology , Immunoglobulins, Intravenous/therapeutic use , SARS-CoV-2/physiology , Aged , Aged, 80 and over , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Antigens, Viral/immunology , COVID-19/mortality , COVID-19/therapy , Cross Reactions , Female , Humans , Immunity, Heterologous , Immunoglobulin G/metabolism , Immunoglobulin M/metabolism , Immunologic Memory , Male , Middle Aged , Survival Analysis
18.
Viruses ; 14(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1674827

ABSTRACT

A new SARS-CoV-2 variant B.1.1.529 was named by the WHO as Omicron and classified as a Variant of Concern (VOC) on 26 November 2021. Because this variant has more than 50 mutations, including 30 mutations on the spike, it has generated a lot of concerns on the potential impacts of the VOC on COVID-19. Here through ELISA assays using the recombinant RBD proteins with sequences the same to that of SARS-CoV-2 WIV04 (lineage B.1), the Delta variant and the Omicron variant as the coating antigens, the binding capabilities between the RBDs and the antibodies in COVID-19 convalescent sera and vaccine sera after two doses of the inactivated vaccine produced by Sinopharm WIBP are compared with each other. The results showed that the Omicron variant may evade antibodies induced by the ancestral strain and by the inactivated vaccine, with significant reduction in the binding capability of its RBD much greater than that of the Delta variant.


Subject(s)
Antibodies, Viral/metabolism , Binding Sites, Antibody/physiology , COVID-19 Vaccines/immunology , COVID-19/immunology , Convalescence , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , Immune Evasion , Mutation , Neutralization Tests , Vaccines, Inactivated/immunology
19.
Sci Transl Med ; 14(637): eabi9215, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1673344

ABSTRACT

Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a CoV disease 2019 (COVID-19) convalescent donor that exhibits broad reactivity with human ß-CoVs. Here, we showed that CC40.8 targets the conserved S2 stem helix region of the CoV spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem peptide at 1.6-Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in ß-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted that CC40.8-like bnAbs are relatively rare in human COVID-19 infection, and therefore, their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on ß-CoV spike proteins for protective antibodies that may facilitate the development of pan-ß-CoV vaccines.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral , COVID-19/immunology , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
20.
Science ; 375(6584): 1048-1053, 2022 03 04.
Article in English | MEDLINE | ID: covidwho-1673339

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has become the dominant infective strain. We report the structures of the Omicron spike trimer on its own and in complex with angiotensin-converting enzyme 2 (ACE2) or an anti-Omicron antibody. Most Omicron mutations are located on the surface of the spike protein and change binding epitopes to many current antibodies. In the ACE2-binding site, compensating mutations strengthen receptor binding domain (RBD) binding to ACE2. Both the RBD and the apo form of the Omicron spike trimer are thermodynamically unstable. An unusual RBD-RBD interaction in the ACE2-spike complex supports the open conformation and further reinforces ACE2 binding to the spike trimer. A broad-spectrum therapeutic antibody, JMB2002, which has completed a phase 1 clinical trial, maintains neutralizing activity against Omicron. JMB2002 binds to RBD differently from other characterized antibodies and inhibits ACE2 binding.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites , Cryoelectron Microscopy , Epitopes , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL